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Abstract
This paper explores the de Haas–van Alphen effect (dHvA) of graphene in the presence of an
in-plane uniform electric field. Three major findings are yielded. First of all, the electric field is
found to modulate the de Haas–van Alphen magnetization and magnetic susceptibility through
the dimensionless parameter (β = E

υF B ). As the parameter β increases, the values of
magnetization and magnetic susceptibility increase to positive infinity or decrease to negative
infinity at the exotic point βc = 1. Furthermore, the dHvA oscillation amplitude rises abruptly
to infinity for zero temperature at βc = 1, but eventually collapses at a finite temperature,
thereby leading to the de Haas–van Alphen effect vanishing. In addition, the magnetic
susceptibility depends on the electric and magnetic fields, suggesting that graphene should be a
non-linear magnetic medium in the presence of an external field. These results, which are
different from those obtained in the standard non-relativistic 2D electron gas, are attributed to
the anomalous Landau level spectrum of graphene.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Owing to the progress in experimental methods, graphene (or
a graphite monolayer) is now attracting increasing interest in
the field of the physics of electronic systems with reduced
dimensionality [1–4]. It is promising for application in
nanoelectronics because of the exotic chiral features [5–9] in its
electronic structure. In particular, such two-dimensional (2D)
or quasi-two-dimensional systems have led to some of the
most startling discoveries in condensed matter physics in
recent years. Moreover, these anomalous phenomena are
found to be tied to the remarkable ‘relativistic-like’ spectrum
of electrons and holes in graphene, which makes graphene
important and interesting in physics. One of those that have
been experimentally testified is the abnormality of the 2D
quantum Hall effect [10, 11].

Another important physics effect is the de Haas–van
Alphen (dHvA) oscillation of graphene. It has been predicted
in [12], which proposes that the magnetization oscillates
periodically in a sawtooth pattern as a function of 1/B , in
agreement with the Peierls prediction [13]. A question of great
interest arising here is what will happen if an additional electric
field is applied in graphene. Indeed, the electric and magnetic
field effects on its magnetization and magnetic susceptibility

are of vital significance to our understanding of the Dirac
fermion behavior. However, little theoretical or experimental
research has been done on this issue yet.

Motivated by the concerns mentioned above, the present
study is to investigate the 2D dHvA effect of graphene in the
presence of an electric field. The paper is organized as follows.
In section 2, a brief introduction is given to the 2D model for
graphene. The energy eigenvalues and eigenstates, as well as
the density of states (DOS) and the dHvA oscillation period
�(1/B) are obtained analytically. Section 3 describes some
details of the magnetization and magnetic susceptibility study.
Analytical expressions are derived for the magnetization and
magnetic susceptibility. More specifically, the one regarding
the condition of T = 0 K is reported in section 3.1 while
the one pertaining to the condition of nonzero temperature is
covered in section 3.2. The section winds up with a discussion
of the modulation of dHvA in graphene by an electric field. In
section 4, the conclusions are presented.

2. Energy eigenvalues and eigenstates

In order to investigate the modulation of dHvA, we begin with
the study of the energy eigenvalues and eigenstates belonging
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to the carriers in graphene. The charge carriers in graphene
mimic relativistic particles with zero rest mass and have the
effective ‘speed of light’ c∗ = υF ≈ 1.0 × 106 m s−1, which is
essentially governed by the Dirac equation [10, 11]. So we start
by considering the Dirac equation for such a 2D gas of Dirac
fermions in crossed electric [ �E = (−E, 0, 0), U = Eex]
and magnetic [ �B = (0, 0, B), �A = (0, Bx, 0)] fields, where
E is the electric field strength and B the magnetic induction
intensity. The single particle Hamiltonian is then given by

Ĥ = υFα̂ ·Π + ÎeEx (1)

in which α̂ is the Pauli matrix, � is the canonical momentum
and Î is the 2 × 2 unit matrix. Following Landau and
Lifshitz [14], the first-order equation of the eigenvalue problem
of Ĥ becomes the second-order equation

[(ε − eEx)2 − (υF �p − e �A)2 + eh̄ Bυ2
Fα̂z + ieh̄EυFα̂x ]� = 0,

(2)
where ε is the eigenvalue of Ĥ and the other notation is
standard. From equation (2), we obtain the energy spectra and
eigenfunctions of the problem,

εn,ky = sgn(n)
√

2|n|h̄eBυF(1 − β2)3/4 + h̄υFβky, (3)

�n,ky (x, y) ∝ exp(iky y) exp[−(β/2)αy]
×

(
sgn(n)i |n|−1φ|n|−1(ξ)

i|n|φn(ξ)

)
, (4)

with

ξ ≡ (1 − β2)1/4

lc

(
x + l2

c ky − sgn(n)

√
2|n|lcβ

(1 − β2)1/4

)
. (5)

In equation (3), e and h̄ = h/2π are the electron charge and
Planck’s constant divided by 2π , respectively. The integer
n represents the Landau level index, ky = 2πl/L y(l =
0,±1,±2, . . . , ) is the quantum number corresponding to the
translation symmetry along the y axis, L y stands for the size of
the graphene in the y direction. The electric field dependent
dimensionless parameter β is defined by β = E/(υF B)

and obeys |β| < 1, where υF is the Fermi velocity. In
equation (4), φn(ξ) are the harmonic oscillator eigenfunctions.
From equation (5) we observe that the centers of the x-
dependent orbits are located at

x0 = l2
c ky − sgn(n)

√
2|n|lcβ

(1 − β2)1/4
, (6)

where lc = √
h̄/eB is the magnetic length. The eigenvalues

of Ĥ show that the exact energies are given by the sum of the
quantized harmonic oscillator energies and the potential energy
of a charged particle located at coordinate x0 in a potential field
U(x). They agree with those in [15], the authors of which
solved the problem by transforming the original system into
a case with a null electric field, in terms of a Lorentz boost
transformation.

We then count the Landau states �n,ky in the presence of
the potential U(x), following the same argument employed in
the absence of a crossed electric field. Since ky = 2πl/L y ,
the separation between adjacent allowed ky values is given by

δky = 2π/L y . From equation (6) we may relate the possible
range �ky of ky to the physically accessible range �x0 of x0:

�x0 = l2
c �ky. (7)

Since �x0 = Lx , in order for the Landau states to be centered
within the strip 0 � x0 � Lx we must allow the range of ky

values given by �ky = �x0/ l2
c . The number of Landau states

�n,ky (x, y) per unit area for each quantum number n is:

Dn = gs�ky

Lx L yδky
= 2eB

h̄π
, (8)

which is independent of n, and the degeneracy yields gs = 4,
accounting for the spin degeneracy and sublattice degeneracy
in graphene.

We consider a system of N electrons within an area S
moving in the potential U(x) and the magnetic field B . Let the
system remain at 0 K and accordingly the free energy reduces
to the total energy. The full occupation of Landau levels obeys
Dn S = N/(nF + 1), with Fermi quantum number nF. The
total energy E = ∑

n,ky
εn,ky (B) will give a discontinuous

derivative M = −∂ E/∂ B at the field values Bn , where
M is the magnetization. From Dn S = N/(nF + 1) these
discontinuities in the magnetization occur at reciprocal fields
1/Bn, so that the period of magnetization oscillation is given
by:

�

(
1

B

)
= 1

Bn+1
− 1

Bn
= 2e

π h̄ N0
, (9)

where Bn+1 and Bn are the magnetic induction intensity
corresponding to two neighboring levels which cross the Fermi
level in succession, and N0 = N/S is the sheet concentration.
Equation (9) means that the discontinuous zero temperature
oscillations are periodic in 1/B . It is just compatible with the
results regarding the null electric field obtained by Sharapov
et al [12].

3. Magnetization and magnetic susceptibility

3.1. Zero temperature

Now we move on to investigate the magnetization of electrons
in graphene in the presence of crossed uniform electric and
magnetic fields at T = 0 K. For simplicity, we ignore
spin–orbit coupling of electrons in the present work. The
magnetization reads [16, 17]

M = −(∂ E/∂ B)N , (10)

where E is the total energy and N denotes the total number of
electrons in graphene. To have the units in tesla, we symbolize
B = μp0 H , μp0 as being the magnetic permeability of free
space, H stands for the magnetic field intensity.

The total energy is given by:

E =
∑

n,ky

εn,ky =
[μ2

0/2eh̄υ2
F B]∑

n=0

Dn(εn − μ) + μN0

+
ly∑

l=−lF

2π

L y
h̄υFβl, (−lF � ly � lF) (11)

2
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in which the last term is the additional energy induced by the
electric field corresponding to the nFth level partly occupied
by electrons and which we refer to as Eadd. Here εn is
defined as εn = √

2nh̄eBυF(1 − β2)3/4. The chemical
potential μ = μ0(1 − β2)3/4 is derived analytically, where
μ0 refers to the zero temperature chemical potential (equal
to the Fermi energy) in the absence of electric and magnetic
fields, as expressed by μ0 = h̄υF

√
N0π . Using the

formula for the generalized zeta function [18], ζ(z, υ + k) =
ζ(z, υ) − ∑k−1

m=0(m + υ)−z and ζ(−1/2, 0) ≡ ζ(−1/2) ≡
−(1/4π)ζ(3/2), one can write the first and the second terms
in equation (11) as the summation of the regular term,

Ereg = −ζ(3/2)υF

π2
√

2h̄
(eB)3/2(1−β2)3/4+ 2μ3

0

3π(h̄υF)2
(1−β2)3/4,

(12)
and the oscillating term

Eosc = −2
√

2h̄υF

π h̄
(eB)3/2(1 − β2)3/4ζ

×
(

−1

2
, 1 +

[
μ2

0

2eh̄υ2
F B

])
− (1 − β2)3/4

×
[

2μ3
0

3π(h̄υF)2
− 2μ0eB

π h̄

(
mod

[
μ2

0

2eh̄υ2
F B

]
− 1

2

)]
. (13)

In this expression, [μ2
0/2eh̄υ2

F B] stands for the integer part of
μ2

0/2eh̄υ2
F B and the mod[μ2

0/2eh̄υ2
F B] is the fractional part of

μ2
0/2eh̄υ2

F B .
Making use of the � function �(n+α) = ∫ ∞

0 ds sn+α−1e−s

and Bernoulli polynomials Bn(y),
∑∞

n=0
xn

n! Bn(y) = xex y

ex −1 ,
(|x | < 2π), we obtain
∞∑

n=2

�(n + α)Bn(y)

n! xn

=
∫ ∞

0
ds sα−1e−s

[
sxesxy

esx − 1
− 1 − sx B1(y)

]
, (14)

where the explicit expressions for the Bernoulli polynomials
B0, B1, B2 are

B0(y) = 1, B1(y) = y − 1/2,

B2(y) = y2 − y − 1/6.
(15)

The Bernoulli polynomials depend on mod[y] in the following
equations, i.e. Bn(mod[y]). For brevity, we write this as Bn(y).

Using the formula [17]
∫ ∞

0

xv−1e−μx dx

1 − e−βx
= 1

βv
�(v)ζ

(
v,

μ

β

)
,

(Re μ > 0, Re v > 0)

we have

Eosc = 2(eBυF)
2

π 3/2μ0
(1 − β2)3/4

×
∞∑

n=0

�(n + 1/2)Bn+2(w/2)

(n + 2)!
(

2eh̄υ2
F B

μ2
0

)n

, (16)

in which w = μ2
0/(eh̄υ2

F B). Regarding small fields, eBh̄υ2
F �

μ2
0, we can apply the following asymptotic expansions for

J1 = ∫ ∞
0 dt e−t p/[√π t(t2 + 1)]:

J1(p) = 1√
π

∞∑

n=0

(−1)n�(n + 1/2)

pn+1/2
(17)

and the Bernoulli polynomials Bn periodically continue
beyond the interval [0, 1]:

Bn = − 2n!
(2π)n

∞∑

k=1

1

kn
cos

(
2πkx − nπ

2

)
,

n > 1, 0 � x � 1; n = 1, 0 < x < 1. (18)

It is easy to get the following form:

Eosc = (eB)3/2υF√
h̄π

(1−β2)3/4
∞∑

k=1

1

(πk)3/2
J1(πkw) cos(πkw).

(19)

For
√

eBh̄υ2
F � μ0, keeping the leading term in the

asymptotic expansions for J1(p), we finally obtain from
equation (19)

Eosc
∼= (eBυF)

2

πμ0
(1 − β2)3/4

∞∑

k=1

cos(πkw)

(πk)2
. (20)

Hence the total energy E can be expressed as a sum of regular,
oscillating and additional energy terms,

E = Ereg + Eosc + Eadd. (21)

According to the results reported above, we get the
corresponding de Haas–van Alphen magnetization,

Mreg = 3e
√

eBh̄ς(3/2)υF

2
√

2π 2h̄(1 − β2)1/4
− μ3

0β
2

π(h̄υF)2 B(1 − β2)1/4
, (22)

Madd = π h̄υFβ

B L y
AM0 , (23)

where

AM0 =
[

μ4
0

π 2(h̄υF)4
−

[
μ2

0

2eh̄υ2
F B

]([
μ2

0

2eh̄υ2
F B

]
+1

)(
2eB

h̄π

)2]
.

(24)
This expression involves a dependence on the integer part
[μ2

0/2eh̄υ2
F B] and

Mosc = AM1

∞∑

k=1

(−1)k

πk
sin

(
πkμ2

0

eh̄υ2
F B

)

+ AM2

∞∑

k=1

(−1)k

(πk)2
cos

(
πkμ2

0

eh̄υ2
F B

)
, (25)

where AM1 = − eμ0(1−β2)3/4

π h̄ and AM2 = − (eυF)2 B(4−β2)

2πμ0(1−β2)1/4 .
Figure 1 shows that the dHvA oscillation on the

magnetization M is modulated by the electric field in graphene.
As shown in figure 1(a), the magnetization M oscillates
periodically in 1/B with a period of �(1/B) = 2eh̄υ2

F/μ2
0.

The three oscillation curves correspond to applied electric
field strengths E1 = 5 V m−1, E2 = 10 V m−1 and E3 =
15 V m−1, respectively. From these curves, one can see that
the oscillation amplitude (OA) of magnetization is proportional

3
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Figure 1. (a) Magnetization M is plotted as a function of reciprocal magnetic field 1/B for a given chemical potential μ0 = 1.6 × 10−19 J and
T = 0 K. The three oscillation curves correspond to E1 = 5 V m−1, E2 = 10 V m−1 and E3 = 15 V m−1, respectively. (b) M plotted versus
electric field E for μ0 = 1.6 × 10−19 J and T = 0 K. The three curves correspond to B1 = 2 T, B2 = 3.63 T and B3 = 5 T, respectively.
(c) The magnetization, M , as a function of 1/B at E = 0.001 V m−1, μ0 = 1.6 × 10−19 J and T = 0 K.

to the electric field E . Also, the OA grows significantly with
increasing 1/B , but remains unchanged for the null electric
field in [12]. Thus, the electric field effect on the OA of
magnetization is demonstrated. However unexpected it may
be, according to equation (25) the OA increases abruptly to
infinity at βc = 1, thereby leading to the vanishing of dHvA
oscillation. It is interesting that the abnormal phenomena
will die out if the electric field vanishes. Thus, it can be
also attributed to the electric field effect. We hope that the
new findings will be verified when magnetization experiments
under an in-plane electric field are carried out in graphene. The
predicted effect will hopefully also help the interpretation of
magnetization in experiment.

In contrast, we find that these peculiar features are absent
in standard quantum 2D electron gas systems [19–21]. Hence,
a possible reason for the effect might be that it is determined
by the ‘relativistic’ character of the carriers in graphene, unlike
the usual sample, which can be traced to the exotic structure in
graphene.

Figure 1(b) demonstrates that the magnetization M is a
function of the electric field E . The three curves correspond to
B1 = 2 T, B2 = 3.63 T and B3 = 5 T, respectively. They
show that the magnetization varies approximately linearly
with increasing E within the given values of parameters.
For B1 = 2 T, the magnetization increases with increasing
E . But for B3 = 5 T, as E increases the magnetization
decreases. In particular, there is a special behavior of the
magnetization at some magnetic fields (e.g. B2 = 3.63 T).
In this case, the magnetization satisfies M 
 0, accounting
for the disappearance of magnetization in graphene. Note

that the magnetization become infinite when the variation of
E obeys βc = 1 according to equations (22) and (25). For
example, the dashed line (B1 = 2 T) rises abruptly to infinity
at E = 2 × 106 V m−1, strikingly different from the non-
relativistic results.

In figure 1(c), we present the dHvA effect for a wide
range of magnetic fields, starting from 10 to 400 T, in order to
examine what will happen if the magnetic field tends to infinity.
As a result, we observe that on this scale, the electric field
effect could be negligible, corresponding to the case β → 0.
In other words, for the case of β → 0, the magnetization M
reduces to the result for the null electric field.

The same discussion above fits for the magnetic
susceptibility χ . We can obtain the expression for the dHvA
magnetic susceptibility in terms of χ = ∂M/∂ H ,

χreg = 3eμp0
√

eh̄ς(3/2)υF

4
√

2Bπ 2h̄(1 − β2)5/4
(1 − 2β2)

+ μ3
0β

2μp0(6 − 5β2)

2π(h̄υF B)2(1 − β2)5/4
, (26)

χadd = − 2μp0βμ4
0

L y B2(h̄υF)3
, (27)

and

χosc = (Aχ1 + Aχ2)

∞∑

k=1

(−1)k cos

[
πkμ2

0

eh̄υ2
F B

]

+ (Aχ3 + Aχ4)

∞∑

k=1

(−1)k

πk
sin

[
πkμ2

0

eh̄υ2
F B

]
, (28)

4
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Figure 2. (a) Magnetic susceptibility χ depends on reciprocal field 1/B for a given chemical potential μ0 = 1.6 × 10−19 J and T = 0 K. The
three oscillation curves of magnetic susceptibility correspond to E1 = 0 V m−1, E2 = 2 V m−1 and E3 = 4 V m−1, respectively. (b) χ as a
function of electric field E for μ0 = 1.6 × 10−19 J and T = 0 K. The three curves correspond to B1 = 2 T, B2 = 3 T and B3 = 15 T,
respectively.

where

Aχ1 = μp0μ
3
0(1 − β2)3/4

π(h̄υF B)2
,

Aχ2 = − (eυF)
2μp0(8 − 10β2 − β4)

4πμ0(πk)2(1 − β2)5/4
,

Aχ3 = − μp0eμ0(4 − β2)

2π h̄ B(1 − β2)1/4
,

Aχ4 = − 3μp0eμ0β
2

2π h̄ B(1 − β2)1/4
.

(29)

We can see that the magnetic susceptibility is related to both
the electric and magnetic fields. It follows that, unlike the usual
samples, graphene may be a non-linear magnetic medium.

Figure 2(a) shows that the magnetic susceptibility χ

oscillates periodically as a function of 1/B , and the period
follows equation (9). The three oscillation curves correspond
to E1 = 0 V m−1, E2 = 2 V m−1 and E3 = 4 V m−1,
respectively. For the case (E1), the reader may observe
that the magnetic susceptibility χ swings between negative
and positive values, thus the curve shows a totally orbital
diamagnetic to paramagnetic transition. As for the finite
electric fields, one can see that the magnetic susceptibility
decreases in company with the periodic oscillation, while 1/B
rises and the OA augments as 1/B increases. Furthermore,
from equation (28) it can be seen that the OA increases to
infinity at βc = 1, leading to the vanishing of the dHvA
effect on magnetic susceptibility. In general, the magnetic
susceptibility χ is a constant in a usual electron gas, but in
graphene it exhibits a dependence on the external field.

Figure 2(b) depicts the magnetic susceptibility χ with
respect to the electric field E . The three curves correspond
to B1 = 2 T, B2 = 3 T and B3 = 15 T, respectively. As is
shown by the three curves, the magnetic susceptibility varies
approximately linearly with increasing E . For B = 2, or 3 T,
the magnetic susceptibility decreases as E increases and yields
χ < 0, indicating the existence of Landau diamagnetism in
graphene, the origin of which can be traced to the quantized
Landau level. In the case of B = 15 T or larger, the magnetic
susceptibility χ 
 0 despite the increase of E , suggesting the
disappearance of the diamagnetism in graphene. That is, there
is no increase in the magnetic susceptibility with increasing E .
Moreover, the dashed line (B1 = 2 T) decreases to negative
infinity at the exotic point E = 2 × 106 V m−1 (i.e. βc = 1),
as illustrated by equations (26) and (28).

3.2. Finite temperature

We now consider the temperature effect on the oscillations
of magnetization and magnetic susceptibility. As documented
in [12], the thermodynamic potential of electrons in graphene
can be expressed as

�(T, μ) =
∫ ∞

−∞
dω PT (ω − μ)E(ω), (30)

with the energy variables ω and μ. Also PT (z) is the
distribution function as

PT (z) = −∂nF(z)

∂z
= 1

4kBT cosh2 z
2kBT

. (31)

5
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Using equation (30), the thermodynamic potential � can
be divided as follows:

�(T, μ) = �reg + �add + �osc. (32)

At low temperatures, neglecting 0(kBT ), we can obtain

�reg = −ζ(3/2)υF

π 2
√

2h̄
(eB)3/2(1 − β2)3/4

+ 2μ3
0

3π(h̄υF)2
(1 − β2)3/4, (33)

�add = π

L y
h̄υFβ A�T RT (k, μ), (34)

where

A�T = μ4
0

π 2(h̄υF)4
− 2eBμ2

0

h̄(π h̄υF)2

(
2

[
μ2

0

2eh̄υ2
F B

]
+ 1

)

+
[

μ2
0

2eh̄υ2
F B

]([
μ2

0

2eh̄υ2
F B

]
+ 1

)(
2eB

h̄π

)2

. (35)

This expression involves a dependence on the integer part
[μ2

0/2eh̄υ2
F B]. Here we introduced the temperature reduction

factor

RT (k, μ) = 2π2kμ0kBT/(eh̄υ2
F B∗)

sinh 2π2kμ0kBT
eh̄υ2

F B∗
, (36)

in which B∗ = B(1 − β2)3/4. Equation (36) means that
the temperature reduction factor RT depends not only on the
temperature, but also on the electric and magnetic fields. We
return now to the oscillating part of thermodynamic potential.
Substituting equation (19) into equation (30), it is convenient
to get the expression of �osc as

�osc(T, μ) = (eB)3/2υF√
h̄π 3/2

(1 − β2)3/4
∞∑

k=1

1

(πk)3/2

× Im

[
e−iπ/4

∫ ∞

0

dte−i(πkw)t

√
t(t + 1)

∫ ∞

−∞
dε

4kBT cosh2 (ε−μ)

2kBT

× exp

( −iπkε2(t + 1)

eh̄υ2
F B(1 − β2)3/2

)]
, (37)

in which we used that the function J1(p, r) and J2(p, r) which
can be represented as the negative Im and Re parts of the same
function

√
π J1(p, r) = − Im

∫ ∞

0

dt e−pt−r/t

√
t(t + i)

,

√
π J2(p, r) = − Re

∫ ∞

0

dt e−pt−r/t

√
t(t + i)

,

(38)

and rotated the integration contour to the imaginary axis.
Finally we get

�osc(T, μ) = (eBυF)
2

πμ0
(1 − β2)3/4

∞∑

k=1

cos(πkw)

(πk)2
RT (k, μ),

(39)
with w = μ2

0/(eh̄υ2
F B). Clearly, since RT (k, μ) → 1 for

T → 0, equation (39) reduces to the oscillating energy for zero

temperature. When the temperature T �= 0, the magnetization
can be obtained as follows:

MT
reg = 3e

√
eBh̄ζ(3/2)υF

2
√

2π 2h̄(1 − β2)1/4
− μ3

0β
2

π(h̄υF)2 B(1 − β2)1/4
, (40)

MT
add = π h̄υFβ RT

B L y
AM0 − π h̄υFβ(2 + β2)

2B L y(1 − β2)
A�T (R∗

T − RT ),

(41)
and

MT
osc = −eμ0

π h̄
(1 − β2)3/4

∞∑

k=1

sin(πkw)

πk
RT

− (eυF)
2 B

2πμ0(1 − β2)1/4
[(4 − β2)RT

+ (2 + β2)(R∗
T − RT )]

∞∑

k=1

cos(πkw)

(πk)2
, (42)

where R∗
T (k, μ) = R2

T (k, μ) cosh(2π2kμ0kBT/eh̄υ2
F B∗).

Apparently, since RT (k, μ) → 1 and R∗
T (k, μ) → 1 for T →

0, equation (42) reduces to the magnetization in equation (25)
for zero temperature.

As illustrated in figure 3(a), finite T causes a reduction
of the magnetization amplitude as opposed to the case of
T = 0 K. In addition, it shows the magnetization M versus
reciprocal field 1/B for three different temperatures with a
given E . It can be seen that as the value of 1/B increases,
the OA of magnetization decreases and eventually collapses
when β → 1. Nevertheless, regarding zero temperature, there
is no such a collapse for the OA of magnetization, as shown
in figure 1(a). Accordingly, we attribute this to the finite
temperature effect.

Figure 3(b) depicts the magnetization M as a function of
E for three different temperatures with a given B . The three
curves correspond to T1 = 20 K, T2 = 30 K and T3 =
100 K, respectively. It has been shown that the magnetization
decreases approximately linearly with increasing E , except in
the case of T3 = 100 K. Finally, the magnetization decreases
to negative infinity at βc = 1, following equations (40)–(42).
At the temperature T3 or even a higher one, the magnetization
M 
 0 rather than decreasing with increasing E . Figure 3(c)
gives the magnetization M as function of the temperature T .
Increasing T , the magnetization M increases for B1, B3, B5

and decreases for B2, B4, B6, but they all end up approaching
different constants.

We get the dHvA magnetic susceptibility from the
magnetization:

χT
reg = 3eμp0

√
eh̄ς(3/2)υF

4
√

2Bπ 2h̄(1 − β2)5/4
(1 − 2β2)

+ μ3
0β

2μp0(6 − 5β2)

2π(h̄υF B)2(1 − β2)5/4
, (43)

χT
add = − 2μp0βμ4

0 RT

L y B2(h̄υF)3
+ π h̄υFμp0β(2 + β2)

B2L y(1 − β2)
AM0(R∗

T − RT )

− Aχ0T A�T

π h̄υFμp0β

L y
, (44)
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Figure 3. (a) Magnetization M is plotted as a function of reciprocal magnetic field 1/B for a given chemical potential μ0 = 1.5 × 10−19 J and
E = 2 V m−1. The three curves correspond to temperature T1 = 90 K, T2 = 100 K and T3 = 150 K, respectively. (b) M plotted for electric
field E with B = 2 T and μ0 = 1.5 × 10−19 J. The three curves correspond to T1 = 20 K, T2 = 30 K and T3 = 100 K, respectively. (c) M is
plotted as a function of temperature T for μ0 = 1.5 × 10−19 J.

and

χT
osc = Aχ1T

∞∑

k=1

cos(πkw) + Aχ2T

∞∑

k=1

sin(πkw). (45)

In equation (44), AM0 and A�T are defined by equations (24)
and (35), respectively. We also define

Aχ0T = (2β4 − 10β2 − 4)

[2B(1 − β2)]2
[R∗

T − RT ] +
(

2 + β2

2B(1 − β2)

)2

×
[

2RT (R∗
T − RT ) cosh

2π 2kTμ0

eh̄υ2
F B∗

− R3
T sinh2 2π2kT μ0

eh̄υ2
F B∗ − (R∗

T − RT )

]
, (46)

Aχ1T = μ3
0μp0(1 − β2)3/4

π(h̄υF B)2
RT − (eυF)

2μp0(4 − β2)(2 + β2)

2πμ0(πk)2(1 − β2)5/4

× (R∗
T − RT ) − RT

(eυF)
2μp0(8 − 10β2 − β4)

4πμ0(πk)2(1 − β2)5/4

− Aχ0T μp0(eυF B)2

πμ0(πk)2
(1 − β2)3/4, (47)

Aχ2T = − eμ0μp0(2 + β2)

π 2h̄k B(1 − β2)1/4
R∗

T . (48)

Figure 4(a) shows the magnetic susceptibility χ oscillates
periodically as a function of 1/B , for three characteristic
temperatures, namely, 80, 100, and 150 K. Similar to the
magnetization as shown in figure 3(a), it also exhibits the
dependence on temperature. It can be seen clearly that finite
T causes a reduction of the oscillation amplitude, and as the

value of 1/B increases, the OA of the magnetic susceptibility
finally decays to zero.

Figure 4(b) shows the magnetic susceptibility χ plotted as
a function of E with a given B . The three curves correspond
to T1 = 20 K, T2 = 30 K and T3 = 100 K, respectively.
For a finite temperature such as T1 or T2, the magnetic
susceptibility decreases approximately linearly with increasing
E and exhibits Landau diamagnetism in graphene supported
by χ < 0. In contrast, at the temperature T3, the magnetic
susceptibility χ 
 0, stands for the disappearance of the
diamagnetism in graphene. In addition, there is no increase
in the magnetic susceptibility with increasing E . It warrants
great attention that from equations (43)–(45), it could be
inferred that the magnetic susceptibility eventually decreases
to negative infinity at βc = 1. Figure 4(c) directly gives the
magnetic susceptibility χ with respect to the temperature T .
More specifically, it shows that the magnetic susceptibility χ

increases with increasing T and finally approaches zero under
different electric fields E and the magnetic fields B .

4. Conclusions

In summary, this paper reports on a theoretical study on the
modulation of the de Haas–van Alphen effect in graphene
by an electric field. Three major findings emerge from
the study. First of all, we find that both magnetization
and magnetic susceptibility are modulated by the electric
field. At zero or finite temperature, both magnetization and
magnetic susceptibility are predicted to oscillate periodically
as a function of the reciprocal field 1/B . The dHvA oscillation
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Figure 4. (a) Magnetic susceptibility χ to reciprocal field 1/B for a given chemical potential μ0 = 1.5 × 10−19 J and E = 0.01 V m−1. The
three oscillation curves of magnetic susceptibility correspond to T1 = 80 K, T2 = 100 K and T3 = 150 K, respectively. (b) χ as a function of
electric field E with B = 2 T and μ0 = 1.5 × 10−19 J. The three oscillation curves of magnetic susceptibility correspond to T1 = 20 K,
T2 = 30 K and T3 = 100 K, respectively. (c) χ as a function of temperature T for μ0 = 1.5 × 10−19 J.

period �(1/B) is derived analytically. It is also discovered
that as the parameter β increases, the values of magnetization
and magnetic susceptibility finally increase to positive infinity
or decrease to negative infinity at the exotic point βc = 1.
Furthermore, the analytical results indicate that the dHvA
oscillation amplitude increases abruptly to infinity for zero
temperature at βc = 1, but eventually collapses at a finite
temperature, directly leading to the vanishing of the de Haas–
van Alphen effect. The ‘vanishing’ is accounted for by the
anomalous effect of the electric field on the Landau level,
which arises from the instability of the relativistic quantum
field vacuum. In addition, it is established that the magnetic
susceptibility depends on the electric and magnetic fields,
which suggests that graphene should be a non-linear magnetic
medium. These phenomena, not available in the standard 2D
electron gas, are deemed as the consequence of the relativistic
type spectrum of low energy electrons and holes in graphene.
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